Higher order numerical schemes for affinely controlled nonlinear systems
نویسندگان
چکیده
A systematic method for the derivation of high order schemes for affinely controlled nonlinear systems is developed. Using an adaptation of the stochastic Taylor expansion for control systems we construct Taylor schemes of arbitrary high order and indicate how derivative free Runge-Kutta type schemes can be obtained. Furthermore an approximation technique for the multiple control integrals appearing in the schemes is proposed. AMS Subject Classification: 65L05, 93B40
منابع مشابه
Numerical Schemes of Higher Order for a Class of Nonlinear Control Systems
We extend a systematic method for the derivation of high order schemes for affinely controlled nonlinear systems to a larger class of systems in which the control variables are allowed to appear nonlinearly in multiplicative terms. Using an adaptation of the stochastic Taylor expansion to control systems we construct Taylor schemes of arbitrary high order and indicate how derivative free Runge-...
متن کاملNonstandard explicit third-order Runge-Kutta method with positivity property
When one solves differential equations, modeling physical phenomena, it is of great importance to take physical constraints into account. More precisely, numerical schemes have to be designed such that discrete solutions satisfy the same constraints as exact solutions. Based on general theory for positivity, with an explicit third-order Runge-Kutta method (we will refer to it as RK3 method) pos...
متن کاملSolving systems of nonlinear equations using decomposition technique
A systematic way is presented for the construction of multi-step iterative method with frozen Jacobian. The inclusion of an auxiliary function is discussed. The presented analysis shows that how to incorporate auxiliary function in a way that we can keep the order of convergence and computational cost of Newton multi-step method. The auxiliary function provides us the way to overcome the singul...
متن کاملA total variation diminishing high resolution scheme for nonlinear conservation laws
In this paper we propose a novel high resolution scheme for scalar nonlinear hyperbolic conservation laws. The aim of high resolution schemes is to provide at least second order accuracy in smooth regions and produce sharp solutions near the discontinuities. We prove that the proposed scheme that is derived by utilizing an appropriate flux limiter is nonlinear stable in the sense of total varia...
متن کاملNonstandard finite difference schemes for differential equations
In this paper, the reorganization of the denominator of the discrete derivative and nonlocal approximation of nonlinear terms are used in the design of nonstandard finite difference schemes (NSFDs). Numerical examples confirming then efficiency of schemes, for some differential equations are provided. In order to illustrate the accuracy of the new NSFDs, the numerical results are compared with ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Numerische Mathematik
دوره 89 شماره
صفحات -
تاریخ انتشار 2001